

STREAMLINING THE SUPPLY CHAIN:

GREENHOUSE GAS EMISSIONS AND DRY MATTER LOSSES FROM WOOD CHIP STACKS

Carly Whittaker, Nicola Yates & Ian Shield

Supergen Annual Assembly. 5th November 2014, Birmingham.

Rothamsted Research: Role in Supergen

- WP1.4. 'Streamlining the supply chain'
 - Examining losses in biomass supply chains
 - Dry matter, lost energy and quality changes
 - Focusing on:
 - Wood chip storage
 - Implications of losses to GHG savings
 - Life cycle assessment approach
 - 'Hot spot' analysis

A year ago...

- Research question: What are the dry matter losses and greenhouse gas emissions from wood chip storage?
 - Cap layer forms on outside
 - Mouldy and very damp
 - "Protects" core from rain fall
 - What losses occur in pile?
 - Temperature increases up + 60°C rapidly (1 week)
 - Lots of microbial activity just a giant compost heap?
 - Are there emissions of GHGs from stacks methane?

Why Store as Wood Chips?

There are other options to harvest woody biomass: rods or billets (SRC) or round wood or brash bales (forest residues)

Wood chips

- Pre-processed and homogenised fuel
- Harvesting as chip saves a processing step
- Improves bulk density compared billets/bales

Can't avoid a chip storage phase

- Buffer store
- Some boilers can take wet chips ~ 7 GJ/tonne.
 - Storage to dry from 50% m.c to 25-30% ~11
 GJ/tonne
 - Gain ~4 GJ/tonne ...In theory

The Experiment: SRC-Chip Piles

East Midlands Parkway

- Commercial system
- Stored on ground
- Approx.200 tonnes
- Cut in March by contractors

Rothamsted Research

- Cut in April (after bud flush)
- Harvested and built by Rothamsted
- Stored on concrete landing
- ~same height
- 84.1 tonnes

Sampling Methods

- Sampling for:
- Dry matter losses

4-7 months

- Temperature changes during experiment
- Moisture content changes
- GHG emissions within stack

- Temperature recorder

Results

Start 4 months later

Temperature Records

East Midlands Stack
East Midlands Ambient
Rothamsted Stack

Rothamsted Ambient

Temperature increased to +60C within 10 days of stack set up.

GHG Emissions: CO₂ @ East Midlands Pile

CO₂ Rothamsted vs. East Midlands

GHG Emissions: N₂O @ East Midlands Pile

N₂O Rothamsted vs. East Midlands

GHG Emissions: CH₄ @ East Midlands Pile

CH₄ Rothamsted vs. East Midlands

CH₄ Rothamsted vs. East Michans

Dry Matter Losses?

Lost 18% of the dry matter, or -1.1 GJ per tonne stored - Some very mouldy bags

Lost 19% of the dry matter, or -0.1 GJ per tonne stored - Some dried very well and increased energy content

NET ENERGY LOSS FROM WOOD CHIP STORAGE

Dry Matter Losses?

Dry Matter Losses?

Whole Stack at Rothamsted: Lost 21% of dry matter

- Energy loss- 1.6 GJ/tonne stored
- Energy in/out ratio: 0.8

NET ENERGY LOSS FROM WOOD CHIP STORAGE

Conclusions and Questions...

- "There were so many variables"
- Higher levels of GHGs were detected in the core of the stacks compared to outer layers
- There is a net dry matter (~20%) and energy loss from wood chip storage
- Wood chips dried from 54% to 38%over 7 months
- There was a relatively large detection of methane in one stack but not the other
- Questions:
- Are the differences between the piles due to ground conditions? Pile sizes? Or something else?
- Does the methane leave the stack?
- How can we translate our GHG emission results to 'per tonne chip'?
- What is the net effect of storage on GHG emission savings compared to alternative drying and storage options
- How do the microbial populations differ between stacks?

Thank You

Contact: carly.whittaker@rothamsted.ac.uk

