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Conventional biofuel production using waste biomass 

Proposed photocatalytic biofuel production 
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Photocatalytic bioethanol vs conventional bioethanol
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Photocatalytic Bioethanol Production
Project overview

• Visible light nanoparticulate catalyst to release of fermentable sugars  from waste biomass.

• Engineer cost and energy efficient cellulosic photocatalytic saccharification reactor

• Select or manipulate microorganism(s) those ferments the photocatalytic by-products



Content of cellulose in common agricultural residue and wastes 

Prasetyo and Park, 2013



Photocatalysis 



Choi, W.; Kim, S.; Cho, S.; Yoo, H.-I. & Kim, M.-H.
Korean J. Chem. Eng., 2001, 18, 898-902 

Cellulose will not adsorb, so:

- very close contact with catalyst 

- Or migrating OH•

radius of diffusion will dictate the 

reaction zone.

From ~ 1 μm to ~2 mm:

J. Phys. Chem. B, 2002, 106, 11818

J. Phys. Chem. B, 2001, 105, 6987 

Cellulose photodegradation is a 

Solid-Solid photocatalysis

The importance of hydroxyl radicals (OH.)



Cellobiose 
C12H22O11

MW- 342.30 

Cellotriose - C18H32O16 
MW- 504.44

Glucose 
C6H12O6

MW- 180.16 

Cellotetraose - C24H42O21
MW- 666.58 

Cellulose photodegradation

Organism Characteristics Advantages Reference 

Saccharomyces
cerevisiae

Facultative
anaerobic yeast

Naturally adapted, High alcohol yield, High 
alcohol tolerance, genetic modification

Girio et al., 2010,

Zymomonas
mobilis

Ethanologenic
Gram-neg bacteria

High ethanol productivity
(five-fold more than S. cerevisiae)

Balat & Balat, 2008

Esherichia coli Mesophilic
Gram-neg bacteria.

Ferments pentoses & hexoses, Amenability 
for genetic modifications

Zayed et al., 1996

Thermoanaerobacterium
Saccharolyticum, 
Thermoanaerobacter
ethanolicus,
Clostridium thermocellum

Extreme anaerobic
bacteria

Resistance to an extremely high
temperature of 70 °C
Ferment a variety of sugars
Amenability to genetic modification

Georgieva et al., 
2008
Kumar et al., 2009 

cleave hydrogen and glycosidic bonds



Glucose 
C6H12O6

MW- 180.16 

Cellobiose 
C12H22O11

MW- 342.30 

Cellopentaose
C30H52O26
MW - 828.72

Cellopentaose
C30H52O26 ; MW - 828.72

Cellotetraose
C24H42O21 MW- 666.58 
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HPLC-ELSD analysis of cellodextrins

Waters Xbridge Amide column (3.5 µm x 4.6 x 250 mm) – HPLC-ELSD  
LOD – 5 µg/ml 
ACN : Water

Waters Acquity BEH Amide column (1.7 µm x 2.1 x 100 mm) – UPLC-MS  
LOD – 1 µg/ml 



Proof of Principle
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UPLC-MS analysis of cellulose breakdown products

Glucose analytical standard  180 + Na = 203 m/z

Samples infused  into QToF MS 



 Key features for catalysts
 Visible light activation
 Structure 

 Increases e- and h+ mobility and separation 
 Band gap energy 

For solar photon absorption 
 Surface Area

 Increases catalyst-reactant surface reaction    
 Particle size

Critical for catalyst interaction with 
cellulose chains – catalyst needs to 
‘penetrate’ cellulose chains   

 Recyclability
 Cost
 Hydroxyl radical formation 

Catalyst development



 In-situ growth of CdS QDs on cellulose 
 Coupling CdS quantum dots with cellulose increases the stability of 

CdS and can prevent photo corrosion.

 Irradiation under visible light for 24 hrs (420 nm cut-off filter)
 CdS Ebg = ~2.5 eV which corresponds to excitation at ~495 nm

 Analysis by HPLC-RI 

 Small sugars or organic acids from cellulose decomposition 
were found out – further detection and identification is 
currently ongoing. 

Catalyst development
initial work by St. Andrews 



 The effectiveness of any 
photocatalytic treatment 
processes depends on: 

• Distribution of target 
molecule and photocatalyst 

• Reaction kinetics 
• Irradiation characteristics
• Mass transfer of target 

molecule and photocatalyst
– Maximise interaction between 

cellulose and OH. in order to 
cleave hydrogen and glycosidic
bonds 

Reactor Development  

The conversion of target species 
(cellulose) is controlled by the 

rate of mass transfer

Mass transfer of a reactor is 
capable of supplying target 

species to the catalyst surface

In a mass controlled reactor, 
increasing mixing properties will 

increase level of conversion 



• Solar light is potentially a huge source of 
energy
– 120 000 TW year-1 solar irradiation 

reaching Earths surface 
– Capturing and harvesting light is a major 

limitation 
– Photocatalysis has ability to harness solar 

light and convert into renewable energy 
products – Bioethanol production 

• Concentration of solar light is essential
– Parabolic mirrors and solar concentrators 
– Light guiding mirrors can concentrate and 

direct a focused photon beam towards a 
target reactor 

– Under diffuse weather conditions 
concentrating solar irradiation is key to 
drive the photocatalytic release of glucose 
from cellulose  

Solar Light Utilisation

Concentrated light 
from a solar 

telescope 

Photo Reactor



• LED illumination is a low power lab scale alternative to solar irradiation
– Temporary approach for evaluation of catalysts and systems 
– Currently in use are 3.8 V LEDs that provide a 30o viewing angle 
– Ideal for use in submerged systems to maximise light penetration and flow 

characteristics 
– Range of LEDs can be used to mimic solar irradiation 
– Choice of LED is dictated by catalyst development 

• Incorporation of co-catalysts and dopants will change the electronic 
configuration of the catalyst which can shift the Ebg and absorption region 

Simulated Light 

30o



PERISLALTIC 
PUMP

Fermentation Cellodextrins
RECOVERY

RO MEMBRANE 

ILLUMINATION

Water 

Cellodextrins 

FEED 
TANK

Cellodextrins

Permeate 
(water)

Feed

Concentrate 

Multistage reactor development 
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• Dry paper mill waste - 1 tonne (1000 kg)
• Cellulose content in paper mill waste (85%) - 850 kg (Prasetyo and Park, 2013)

• Photocatalytic efficiency (90%) - x 0.90
• Efficiency of glucose harvest (90% RO) - x 0.90
• Ethanol stoichiometric yield - x 0.51 (Badger, 2002)

• Glucose fermentation efficiency (75%) - x 0.75 (Badger, 2002)

• EtOH harvest – membrane separation  (80%) - x 0.80

• Yield of EtOH from glucose = 210 kg (267 L) per tonne
• Annual paper mill waste produced = ~6000 tonnes 
• Dry annual paper mill waste (40%) = 2400 tonnes
• Potential annual EtOH production = 267 L x 2400 = 640,000 L 

Yields of bioethanol by photocatalytic release of glucose from 
paper mill waste (% dry weight)
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