

THE BIO-CAP-UK PROGRAMME

Impacts of Biomass Feedstock Properties on Air/Oxy Combustion with Carbon Capture

Dr Karen N Finney

Leilani Darvell; Ben Dooley; Rachael Hall; Jenny Jones; Mohamed Pourkashanian; Alan Williams

Overview

- Introduction to the Bio-CAP-UK Programme
- Work packages
- Fundamental fuel studies
 - > fuel tests
 - preliminary results
- Pilot-scale trails at PACT using the 250 kW rig
- ICP-OES: Additional instrumentation
- Secondments

Introduction to Bio-CAP-UK

- Two-year programme funded through UKCCSRC Call 1
- Brings together two 'hubs':

Consortium includes three university partners:

 Research aim: to accelerate progress towards achieving operational excellence for flexible, efficient and environmentally sustainable Bio-CCS thermal power plants by developing and assessing fundamental knowledge, pilot plant tests, techno-economics and LCA

Summary of work packages

WP1

fundamental studies and biomass characterisation

- fuel, char and ash characteristics and milling requirements
- torrefied biomass combustion rate, fuel ignition, burn-out and ash quality
- production of biomass database for subsequent WPs

WP2

pilot-scale plant campaign at UKCCSRC PACT

- air-biomass combustion with post-combustion amine capture
- solvent degradation studies with biomass-generated flue gases
- oxy-biomass combustion with flue gas recycling

WP3

power plant simulations for air-/oxy-biomass combustion

- process simulation linked to CFD modelling of the power plant
- virtual power plant simulations

WP4

bio-CCS value chains in the UK

- developing viable process configurations for different bio-CCS options
- full life cycle and techno-economic assessments

Fundamental fuel studies

- Fundamental studies on fuel, char and ash characterisation
- Range of fuels to be tested but most detailed studies will be carried out on those intended for pilot-scale tests:
 - white wood pellets -
 - El Cerrejon coal
 - a torrefied wood

- Other fuels used for comparison include:
 - ➤ Pittsburgh #8 coal
 - > pine
 - white wood chips

Fundamental fuel studies

- Fuel characterisation:
 - Proximate and ultimate analyses
 - Combustion behavior in air and CO₂-O₂
 - ➤ Devolatilisation behavior— in N₂ and in CO₂

- Char characterisation:
 - Proximate and ultimate analyses
 - Reactivity
 - Morphology
 - Surface area

ash fusion

- Tests on ash residues:
 - Composition
 - Characteristic melting temperatures

	White Wood Pellets	El Cerrejon Coal
Elemental Oxide (%)		•
SiO ₂	25.4	46.1
Al_2O_3	4.4	23.6
Fe ₂ O ₃	3.1	14.3
TiO ₂	0.2	1.0
CaO	20.4	5.1
MgO	6.8	1.7
Na₂O	1.5	2.5
K ₂ O	14.8	0.9
Mn ₃ O ₄	1.9	<0.1
P_2O_5	2.8	0.3
SO ₃	2.9	3.2
Trace Metals (dry) mg/kg		
Arsenic	0.3	3.4
Cadmium	0.1	0.2
Chromium	4.7	5.1
Copper	2.8	5.0
Nickel	0.9	6.2
Lead	1.3	3.1
Vanadium	<0.6	11.5
Zinc	12.7	6.5

Pilot-Scale Trials at PACT

- Technical assessment of up to 100% biomass firing using the UKCCSRC PACT National Core Facilities – by the investigation and comparison of:
 - dedicated biomass power
 - co-firing with coal
- 250 kW combustion rig:
 - air-mode firing with amine-based post-combustion carbon capture (combined with solvent degradation studies)
 - oxy-fuel combustion
- Provide information for subsequent modelling on:
 - operational experience
 - flue gas recycle, optimal burner settings and combustion efficiency
 - ash formation and composition (slagging, fouling, corrosion)
 - emissions measurements (including combustion gas analysis, as well as particulate matter, alkali metals, chlorine and sulphur)

250 kW_{th} Combustion Plant

Solvent-based Carbon Can run in air-mode or oxy-mode **Capture Plant** Air skid secondary overfire **Heat Exchanger** primary Gas **Heaters** compressor **Filter** Air Compressor Coal/biomass 250kW Air **Combustion Rig** feeder recirculating water cooling system

250 kW_{th} Combustion Plant

Simulated oxy mode: Can run in air-mode or oxy-mode fed with CO₂/O₂ from skid **Gas Tanks** Full oxy mode: O₂ make-up secondary with exhaust gas recycle O₂ mix tertiary **Exhaust Gas Recycling** overfire **Heat Exchanger** primary Gas **Heaters Oxyfuel Gas Mixing System Filter** Coal/biomass 250kW Oxyfuel **Combustion Rig** Feeder recirculating water cooling system

250 kW_{th} Combustion Plant

- Cylindrical design with a down-fired pulverised fuel system
- Has two interchangeable Doosan burners:
 - for coal and co-firing

for biomass

 Alstom are a project partner and have designed a new burner to be used for these tests

ICP-OES Mobile Lab

- Element fate and partitioning fuel and ash analysis
- Mobile lab, which houses an inductively coupled plasma optical emissions spectrometer for simultaneous multielemental detection of entrained metal aerosols and vapours
- Can identify the emissions spectra (spectral lines) of nonvolatile metals and major, minor, trace and ultra-trace volatile elements – over 30 elements in total
- Focus on elements that:
 - are found in high concentrations (fuel specific)
 - cause operational issues (slagging, fouling, corrosion, solvent degradation) K and Na
 - are easily vaporised Hg, Cd, Pb
 - are toxic (heavy metals) Hg, V, Cr, Cd and Pb

ICP-OES Configuration

Spectro CIROSCCD

ICP-OES Configuration

Spectral Lines for Elements

Element	Wavelengths (nm)	
* Aluminium	309.271, 396.152	
* Arsenic	189.042	
Barium	455.404	
* Cadmium	214.438, 226.502, 228.802, 361.051	
* Calcium	315.887, 393.366, 396.847, 422.673	
Carbon	193.091, 247.856	
* Chromium	205.552, 283.563	
Cobalt	230.786, 237.862, 238.892	
★ Copper	224.7, 324.754, 327.396	
★ Iron	259.941, 373.486	
* Lead	261.418, 283.305, 405.778	
Lithium	670.78	
★ Magnesium	279.553, 285.213	
* Manganese	257.611, 403.076	
Mercury	194.227, 253.652, 296.728, 435.835	
* Nickel	221.648, 231.604, 305.082, 341.476	
Nitrogen	174.525	
Oxygen	130.485	
★ Potassium	404.721, 761.900, 766.491	
★ Silicon	251.612, 288.158 (plus others)	
Silver	328.068, 338.289	
* Sodium	588.995, 589.592	
Tin	242.949, 303.412	
★ Vanadium	292.464, 309.311	
* Zinc	202.548, 206.191, 213.856	

- * found in high concentrations in oxide form in the fuels
- * found as trace elements in the fuels

Several lines for some elements . . .

. . . but none for CI (cannot be monitored due to low sensitivity and high spectral interference from other elements)

Additional Funding: Secondments

- Inward and outgoing HEFCE secondments:
 - Alstom to ETII (UoL) Dr Rachael Hall to aid with ICP-OES analysis and modelling of bio-CCS
 - ➤ ETII (UoL) to Alstom Dr Karen Finney to assess technoeconomics of reducing metal loading in biomass combustion
- Awarding of project funding of ~£100,000 from EPSRC Impact Acceleration Account, plus a large in-kind contribution from Alstom

THE BIO-CAP-UK PROGRAMME

Thank you!

Dr Karen N Finney

k.n.finney@leeds.ac.uk