

Method for Evaluating the GHG Impact of UK Biomass Resources

Andrew Welfle

Supergen Annual Assembly 05th November 2014

Today's Presentation

- Collaborative research project
- Research from Tyndall Manchester
- Influencing research from DECC
- Project focus, aims & objectives
- Introduction to analyses scenarios & pathways
- Presentation of selected preliminary results
- Project going forward

Research from Tyndall Manchester

- Biomass Resource Model
- Model supply chain dynamics of chosen geography
- Forecast the availability & bioenergy potential of terrestrial biomass resources
- Key focus on analysing interfaces:

Food vs. Biomass

Land vs. Biomass

- Welfle, A. Gilbert, P. Thornley, P. (2014) Securing a Bioenergy Future without Imports. Energy Policy, 68. p. 1-14.
- Welfle, A. Gilbert, P. Thornley, P. (2014) Increasing Biomass Resource Availability through Supply Chain Analysis. Biomass & Bioenergy, In Press.

Research from Tyndall Manchester

UK Biomass Resource Scenarios

Previous Research from DECC

- 'Life cycle impacts of biomass electricity in 2020' sourcing biomass from N. America for UK power plants
- Analysis of the carbon balance of sourcing scenarios
- Comparison of using biomass for power generation in the UK vs. a series of counterfactuals

Stephenson, A. MacKay, D. (2014) Life Cycle Impacts of Biomass Electricity in 2020. Department of Energy & Climate Change.

Collaborative Research Project

- Adapt and apply DECC's methodology.
- Evaluate the potential carbon impact of sourcing UK biomass resources.
- Focus on utilising these resources within heat bioenergy pathways.

Aims:

- Inform DECC's heat generation policy teams.
- Provide evidence for DECC's 2017 Bioenergy Strategy.
- Add further depth to the University of Manchester's UK biomass resource modelling research.

Bioenergy & Counterfactual Scenarios

Scenario	Resources Analysed	Counterfactuals
UK Agricultural Waste Resources	Wastes of agricultural processes such as manures, slurries, litter and also waste foods.	Fertilisers, Landfill, Composting
UK Agricultural Residue Resources	Residues of agricultural processes such as straws.	Returned / Remaining on Land, within Farming Processes, Products
UK Energy Crop Resources	Resources produced specifically for the bioenergy sector such as energy crops on land with alternative previous uses.	Remaining Un-harvested / Current States, Production of Wood Products.

Consultation:	➤ DECC Engineering Teams	➤ Rothamsted Research
	➤ DECC Policy Teams	> Tyndall Centre Manchester
	Forestry Research	Supergen Bioenergy Hub
	Forestry Commission	

Agricultural Waste Scenario

Agricultural Residue Scenario

Energy Crops Scenario

Preliminary Results – AD Pathways

Resources Analysed	Pig Slurry / Cattle Slurry / Poultry Litter / Waste Food / Pig Slurry & Food Waste / Pig Slurry & Maize / Cattle Slurry & Food Waste / Cattle Slurry & Maize	
UK Farm System	Small Scale / Medium Scale / Large Scale / Average UK Farm	
Heat Bioenergy Pathways	Biogas Boiler / Small Scale CHP / Large Scale CHP / Upgrade Biogas for Grid Injection	
Counterfactual Scenarios	Spreading as Fertilizer (slurry/litter) / Landfill (food) / Composting (food) / Food Crop Displacement (maize)	
Spreading Systems	Broadcast / Shallow Injection	
Storage Systems	Lagoon / Open Tank / Closed Tank / Land Storage (covered) / Land Storage (uncovered)	

Default Scenario Options

Preliminary Results - AD Default Scenarios

Scenario Carbon = Bioenergy Scenario
Impact Emissions

Counterfactual Scenario Emissions

Preliminary Results – Range of GHG Impact

of Carbon Impact

Potential Range = Range of Emissions from **Bioenergy Scenarios**

Range of Emissions from **Counterfactual Scenarios**

Project Moving Forward

- Report covering all scenarios & pathways.
- Presenting GHG impact analysis ranges for scenarios
- Presenting GHG impacts of designed default scenarios
- Identification of UK resources & scenario variables with low / negative GHG impact.
- Identification of UK resources & scenario variables with high GHG impact.

Thank you

andrew.welfle@manchester.ac.uk